Skip to main content
Log in

Deciphering the electric field changes in the channel of an open quantum system to detect DNA nucleobases

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

DNA nucleobases strongly absorbed onto a graphene sheet placed between two gold electrodes in a contact–channel–contact configuration were distinguished. We analyzed the system using the nonequilibrium Green’s function method combined with density functional theory. The changes of the electric field in the middle of the vacuum gap (channel) were investigated. The Mulliken population was deciphered for graphene and the nucleobases. We also extracted the image plane, which was found to lie very close to the position of peak induced density. The projection of the electron difference density and electrostatic difference potential of the nucleobases are also presented. The nucleobases were rotated around the z-axis from \(0^\circ \) to \(180^\circ \) in steps of \(20^\circ \), and the isosurfaces for the electron difference density and electron difference potential plotted. The qualitative and quantitative differences among these parameters were used as criteria to identify the DNA nucleobases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saha, K.K., Drndic, M., Nikolic, B.K.: DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. Nano Lett. 12(1), 50–55 (2011)

    Article  Google Scholar 

  2. Zhao, X., et al.: Single-strand DNA molecule translocation through nanoelectrode gaps. Nanotechnology 18, 424018 (2007)

    Article  Google Scholar 

  3. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  4. Han, M.Y.O., zyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  5. Cho, S., Chen, Y.F., Fuhrer, M.S.: Gate-tunable graphene spin valve. Appl. Phys. Lett. 91, 123105 (2007)

    Article  Google Scholar 

  6. Meyer, J.C., et al.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  Google Scholar 

  7. Zwolak, M., Di Ventra, M.: Colloquium: physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008)

    Article  Google Scholar 

  8. Lagerqvist, J., Zwolak, M., Ventra, M.D.: Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93, 2384 (2007)

    Article  Google Scholar 

  9. Krems, M., et al.: Effect of noise on DNA sequencing via transverse electronic transport. J. Biophys. 97, 990 (2009)

    Article  Google Scholar 

  10. Meunier, V., Krstić, P.S.: Enhancement of the transverse conductance in DNA nucleotides. J. Chem. Phys. 128, 041103 (2008)

  11. Chen, X., et al.: First-principles study of high conductance DNA sequencing with carbon nanotube electrodes. Phys. Rev. B. 85, 115436 (2012)

  12. Tsutsui, M., et al.: Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286 (2010)

    Article  Google Scholar 

  13. Huang, S., et al.: Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5, 868–873 (2010)

    Article  Google Scholar 

  14. Postma, H.W.C.H.: Rapid sequencing of individual molecules in graphene nanogaps. Nano Lett. 10(2), 420–425 (2010)

    Article  Google Scholar 

  15. Bunch, J.S., et al.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)

    Article  Google Scholar 

  16. Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  17. Venter, J.C., et al.: The sequence of the human genome. Science 291, 1304–1351 (2001)

    Article  Google Scholar 

  18. Scheicher, R.H., Grigoriev, A., Ahuja, R.: DNA sequencing with nanopores from an ab initio perspective. J. Mater. Sci. (2012). doi:10.1007/s10853-012-6671-0

    Google Scholar 

  19. Pathak, B., et al.: Double-functionalized nanopore-embedded gold electrodes for rapid DNA Sequencing. Appl. Phys. Lett. 100, 023701 (2012)

    Article  Google Scholar 

  20. Prasongkit, J. et al: Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap. J. Phys. Chem. C. 117(29), 15421–15428 (2013)

  21. Feliciano, G.T., et al.: Capacitive DNA detection driven by electronic charge fluctuations in a graphene nanopore. Appl. Phys. Rev. 3, 034003 (2015)

    Article  Google Scholar 

  22. Min, S.K., et al.: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6, 162–165 (2011)

    Article  Google Scholar 

  23. Berahman, M., Sanaee, M., Ghayour, R.: A theoretical investigation on the transport properties of overlapped graphene nanoribbons. Carbon 75, 411–419 (2014)

    Article  Google Scholar 

  24. Branton, D., et al.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008)

    Article  Google Scholar 

  25. Zwolak, M., Di Ventra, M.: Colloquium: physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008)

    Article  Google Scholar 

  26. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge. ISBN: 9780521631457(2004)

  27. Huang, B., et al.: Adsorption of gas molecules on graphene nanoribbons and its implication for nano-scale molecule sensor. J. Phys. Chem. C. 112(35), 13442–13446 (2008)

    Article  Google Scholar 

  28. Liu, Q., et al.: Negative differential resistance in parallel single-walled carbon nanotube contacts. Phys. Rev. B. 83, 155442 (2011)

    Article  Google Scholar 

  29. Ren, H., Li, Q.X., Luo, Y., Yang, J.: Graphene nanoribbon as a negative differential resistancedevice. Appl. Phys. Lett. 94, 173110 (2009)

    Article  Google Scholar 

  30. Stokbro, K., et al.: TranSIESTA: a spice for molecular electronics. Ann N Y Acad Sci 1006, 212–226I (2003)

    Article  Google Scholar 

  31. Prasongkit, J., et al.: Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 11(5), 1941–1945 (2011)

    Article  Google Scholar 

  32. Scheicher, R.H., He, Y., et al.: Test article sample title placed here. Adv. Funct. Mater. 21, 2674–2679 (2011)

    Article  Google Scholar 

  33. Soler, J.M., et al.: The Siesta method for ab initio order-N materials simulation. J. Phys. Cond. Matter. 14, 2745 (2002)

    Article  Google Scholar 

  34. Martin, R. M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge ISBN: 978-0521534406(2004)

  35. Brandbyge, M., et al.: Density-functional method for nonequilibrium electron transport. Phys Rev. B. 65, 165401 (2002)

  36. Khadempar, N., et al.: Sensitive DNA detection based on capacitance properties of graphene. J. Comput. Electron. (2016). doi:10.1007/s10825-016-0839-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Yazdanpanah Goharrizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadempar, N., Berahman, M. & Yazdanpanah Goharrizi, A. Deciphering the electric field changes in the channel of an open quantum system to detect DNA nucleobases. J Comput Electron 16, 411–418 (2017). https://doi.org/10.1007/s10825-017-0958-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-0958-y

Keywords

Navigation